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ANALYSIS OF SO(2N) COUPLINGS OF SPINOR AND

TENSOR REPRESENTATIONS IN SU(N) × U(1)

INVARIANT FORMS

RAZA M. SYED

Department of Physics, Northeastern University, Boston, MA 02115-5000, USA

A review is given of a recently developed technique for the analysis of SO(2N)

invariant couplings which allows a full exhibition of the SU(N) invariant content of
couplings involving the SO(2N) semi-spinors |Ψ± > with chiralilty ± and tensor
representations. We discuss the Basic Theorem used in the analysis and then
exhibit the technique by illustrative examples for the computation of the trilinear
and quartic couplings for the SO(10) case involving three generations of 16 plets
of matter.

1. Introduction

In this paper we give a brief overview of a recently developed technique for

the computation of SO(2N) couplings of spinor and tensor representations

in SU(N) × U(1) invariant forms. These techniques are then specifically

applied in illustrative examples for the computation of SO(10) invariant

couplings when they are decomposed in SU(5)×U(1) invariant forms. The

analysis presented here is of relevance in view of the importance of SO(10)

as a grand unification group1 of the electroweak and the strong interactions.

The techniques used are based on the oscillator method2,3,4 and developed

further in Refs 6,7,8 while some related work can be found in Ref.5. This

paper is thus essentially a brief summary of the works of Refs.6,7. The

outline of the rest of the paper is as follows: In Sec.2 we give a brief

discussion of the SO(2N) algebra, SO(2N) spinor representations for N

odd, form of SO(2N) invariant couplings, and specialization to the SO(10)

case. In Sec.3 we give a brief review of the new technique for the evaluation

of the SO(2N) invariant couplings in terms of SU(N) × U(1) invariant

forms. In this section we also discuss the Basic Theorem derived in Ref.6.

In Sec.4 we specialize to the SO(10) case and give illustrative examples

of the computation of cubic couplings in the superpotential and in the

Lagrangian. These involve couplings 16 − 16 − 126 in the superpotential,
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and the couplings of 16 plets with 45 of gauge fields, i.e., the couplings

16 − 16 − 45, in the Lagrangian. . We also discuss a sample of SO(10)

invariant quartic couplings.

2. Spinor representations of SO(2N); N odd

In this section we will discuss the embedding of SU(N) in SO(2N). Fur-

ther, we list the general expressions for the group invariants formed from

different combinations of SO(2N) spinors. Finally, we specialize the results

to SO(10) grand unification group.

2.1. SO(2N) algebra in a basis

The 2N dimensional spinor, |Ψ > of SO(2N) splits into two inequiv-

alent 2N−1 dimensional semi-spinors, |Ψ(±) > under the action of the

chirality operator: |Ψ(±) >= 1
2 (1 ± Γ0)|Ψ > where Γ0 = iNΓ1Γ2...Γ2N

and further Γ0|Ψ(±) >= ±|Ψ(±) >. Here Γµ (µ = 1, 2, .., 2N) define a rank

2N Clifford algebra with {Γµ, Γν} = 2δµν , and Σµν = 1
2i

[Γµ, Γν ] are the

N(2N − 1) generators of SO(2N). Further, it is convenient to introduce

operators bi and b
†
i such that {bi, b

†
j} = δij , {bi, bj} = 0 = {b†i , b†j}. The

semi-spinors, |Ψ(±) > of SO(2N) can be expanded in terms of reducible

antisymmetric SU(N) tensors M, N as follows

|Ψ(+) >=
N−1∑

p=0,2,..

1

p!
Mi1...ip

(p)

p∏

q=2,4,..

b
†
iq
|0 >,

|Ψ(−) >=

N∑

p=1,3,..

1

p!
N i1...ip

(p)

p∏

q=1,3,..

b
†
iq
|0 > (1)

where the p-index tensors can be reduced to (N − p)-index tensors as

M(N−p)iN ...ip+1
=

1

p!
ǫiN ...i1M

i1...ip

(p)

Mi1...ip†

(p) = M∗
(p)ip...i1

(2)

2.2. SO(2N) invariant couplings

Couplings formed from Ψ† and Ψ are given by

gab < Ψ(±)a|Γ[µ1
..Γµp]|Ψ(∓)b > Φµ1..µp

, p = 1, 3, .., N (3)

gab < Ψ(±)a|Γ[µ1
..Γµp]|Ψ(±)b > Φµ1..µp

, p = 0, 2, .., N − 1 (4)
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where gab is a coupling constant where a and b are family indices. Φµ1µ2...µp

is a real antisymmetric tensor of SO(2N) with dimensionality
(
2N
p

)
. For

p = N

Φµ1..µN
= ∆µ1..µN

+ ∆µ1..µN
,

(
∆µ1..µN

∆µ1..µN

)
= ± i

N !
ǫµ1..µN ν1..νN

(
∆ν1..νN

∆ν1..νN

)
. (5)

Both ∆ and ∆ have dimensionality 1
2

(
2N
N

)
. The symmetry factor in the

exchange of identical Ψ(.) is gab = (−1)
1
2p(p−1)gba. Couplings formed from

ΨT and Ψ are given by

fab < Ψ∗
(±)a|BΓ[µ1

..Γµp]|Ψ(±)b>|Ψ(∓)b >Φµ1..µp
, p = 1, 3, .., N (6)

fab < Ψ∗
(±)a|BΓ[µ1

..Γµp]|Ψ(∓)b > Φµ1..µp
, p = 0, 2, .., N − 1 (7)

where B =
∏N

µ=1 Γ2µ−1 is the SO(2N) charge conjugation operator and

satisfies the relation Σ́T

µνB́ = −Σ́µνB́ where ´ indicates a 2N × 2N matrix

representation. The symmetry factor fab = (−1)
1
2 (N−p)(N−p−1)fba.

2.3. Specialization to SO(10) gauge group

We consider now the special case of SO(10) where Ψ(+) ∼ 16,Ψ(−) ∼ 16

under SO(10) ⊃ SU(5)⊗U(1). Here 16 ⊃ [1]⊕ [5]⊕ [10], 16 ⊃ [1]⊕ [5]⊕ [10]

and 16 ⊗ 16 = 10s ⊕ 120as ⊕ 126s while 16 ⊗ 16 = 1 ⊕ 45 ⊕ 210. In terms

of their oscillator modes

|Ψ(+)a >= |0 > Ma +
1

2
b
†
ib

†
j |0 > Mij

a +
1

24
ǫijklmb

†
jb

†
kb

†
l b

†
m|0 > Mai

|Ψ(−)b >=
1

12
ǫijklmb

†
kb

†
l b

†
m|0 > Nbij + b

†
1b

†
2b

†
3b

†
4b

†
5|0 > Nb + b

†
i |0 > N i

b (8)

where

Ma = νc
La, Maα = Dc

Laα, Mαβ
a = ǫαβγU c

Laγ , Ma4 = E
−

La,

M4α
a = ULaα, Ma5 = νLa, M45

a = E
+

La, M5α
a = DLaα (9)
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and where α, β, γ are the color indices. Cubic couplings in the superpoten-

tial involving Ψ(±) are

W(1) = f
(1)
ab < Ψ̂∗

(±)a|B|Ψ̂(∓)b > Φ

W(45) =
1

2!
f

(45)
ab < Ψ̂∗

(±)a|BΣµν |Ψ̂(∓)b > Φµν

W(210) =
1

4!
f

(210)
ab < Ψ̂∗

(±)a|BΓ[µΓνΓρΓλ]|Ψ̂(∓)b > Φµνρλ

W(10) = f
(10)
ab < Ψ̂∗

(±)a|BΓµ|Ψ̂(±)b > Φµ

W(120) =
1

3!
f

(120)
ab < Ψ̂∗

(±)a|BΓ[µΓνΓλ]|Ψ̂(±)b > Φµνλ

W(126,126) =
1

5!
f

(126,126)
ab < Ψ̂∗

(±)a|BΓ[µΓνΓρΓσΓλ]|Ψ̂(±)b >

(
∆µνρσλ

∆µνρσλ

)
(10)

The semi-spinor Ψ(±) with ̂ stands for a chiral superfield and SO(10)

charge conjugation operator is B = −i
∏5

k=1(bk − b
†
k). Couplings in the

Lagrangian have the form

L(1) = g
(1)
ab < Ψ(±)a|γ0γA|Ψ(±)b > ΦA

L(45) =
1

2!
g
(45)
ab < Ψ(±)a|γ0γAΣµν |Ψ(±)b > ΦAµν

L(210) =
1

4!
g
(210)
ab < Ψ(±)a|γ0γAΓ[µΓνΓρΓλ]|Ψ(±)b > ΦAµνρλ (11)

where A stands for the Lorentz index.

3. Technique for Evaluation of SO(2N) invariants

Here we review the recently developed technique6,7 for the analysis of

SO(2N) invariant couplings which allows a full exhibition of the SU(N)

invariant content of the spinor and tensor representations. The technique

utilizes a basis consisting of a specific set of reducible SU(N) tensors in

terms of which the SO(2N) invariant couplings have a simple expansion.

3.1. Specific set of SU(N) reducible tensors

We begin with the observation that the natural basis for the expansion

of the SO(2N) vertex is in terms of a specific set of SU(N) reducible

tensors, Φck
and Φck

which we define as Ak ≡ Φck
≡ Φ2k + iΦ2k−1, Ak ≡

Φck
≡ Φ2k − iΦ2k−1. This can be extended immediately to define the

quantity Φcicj c̄k.. with an arbitrary number of unbarred and barred indices

where each c index can be expanded out so that AiAjAk... = Φcicjck... =
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Φ2icjck... + iΦ2i−1cjck... etc.. Thus, for example, the quantity Φcicjck...cN

is a sum of 2N terms gotten by expanding all the c indices. Φcicjck...cn

is completely anti-symmetric in the interchange of its c indices whether

unbarred or barred: Φcicjck...cn
= −Φckcjci...cn

. Further, Φ∗
cicjck...cn

=

Φcicjck...cn
etc.. We now make the observation6 that the object Φcicjck...cn

transforms like a reducible representation of SU(N). Thus if we are able to

compute the SO(2N) invariant couplings in terms of these reducible tensors

of SU(N) then there remains only the further step of decomposing the

reducible tensors into their irreducible parts.

3.2. Basic Theorem to evaluate an SO(2N) vertex

A result essential to our analysis is the Basic Theorem6 which states that

an SO(2N) vertex ΓµΓνΓλ...ΓσΦµνλ...σ can be expanded in the following

fashion

ΓµΓνΓλ...ΓσΦµνλ...σ = b
†
ib

†
jb

†
k...b†nΦcicjck...cn

+(bib
†
jb

†
k...b†nΦcicjck...cn

+ perms) + (bibjb
†
k...b†nΦcicjck...cn

+ perms) + ...

+(bibjbk...bn−1b
†
nΦcicjck...cn−1cn

+ perms)

+bibjbk...bnΦcicjck...cn
(12)

The result of Eq.(12) is very useful in the computation of SO(10) invariant

couplings.

4. Cubic Couplings of SO(10)

In this section we give illustrative examples of some SO(10) trilinear cou-

plings in their SU(5) decomposed form. These illustrative examples consist

of 16− 16− 45 couplings in the Lagrangian and the 16− 16− 126 coupling

in the superpotential.

4.1. 16 ⊗ 16 ⊗ 45 coupling in the Lagrangian

The interaction Lagrangian of the 45 of gauge fields with the 16-plet of

SO(10) spinor |Ψ(+) > is given by

L(45) =
1

i

1

2!
g
(45)
ab < Ψ(+)a|γ0γAΣµν |Ψ(+)b > ΦAµν . (13)

Expansion of the vertex gives

ΣµνΦµν =
1

i
(bibjΦcicj

+ b
†
ib

†
jΦcicj

+ 2b
†
ibjΦcicj

− Φcncn
). (14)
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The 45 of SO(10) decomposes under SU(5) as 45 ⊃ 1(g)⊕10(gij)⊕10(gij)⊕
24(gi

j) where

Φcncn
= g, Φcicj

= gi
j +

1

5
δi
jg

Φcicj
= gij , Φcicj

= gij . (15)

The normalized SU(5) gauge fields are

gA = 2
√

5GA, gAij =
√

2GAij

g
ij
A =

√
2G

ij
A , gi

Aj =
√

2Gi
Aj (16)

In terms of the redefined fields, the kinetic energy of the 45-plet takes the

form

− 1

4
FAB

µν FABµν = −1

2
GABGAB† − 1

2!

1

2
GABijG

ij†
AB − 1

4
GABi

j G
j
ABi (17)

where FAB
µν is the 45 of SO(10) field strength tensor

L(45) = g
(45)
ab [

√
5(−3

5
Mi

aγAMbi +
1

10
Maijγ

AMij
b + MaγAMb)GA

+
1√
2
(MaγAMlm

b +
1

2
ǫijklmMaijγ

AMbk)GAlm

− 1√
2
(MalmγAMb +

1

2
ǫijklmMi

aγAMjk
b )Glm

A

+
√

2(MaikγAMkj
b + Mj

aγAMbi)G
i
Aj ] (18)

The barred matter fields are defined so that Mij = M†
ijγ

0.

4.2. 16 ⊗ 16⊗ 126 coupling in the superpotential

The 126 of SO(10) decomposes under SU(5) as 126 ⊃ 1(H) ⊕ 5(Hi) ⊕
10(Hij) ⊕ 15(Hij

(S)) ⊕ 45(Hk
ij) ⊕ 50(Hij

kl). Utilizing the Basic Theorem the

result for the Yukawa coupling involving 126 of Higgs is as follows

W(126) =
1

5!
f

(126)
ab < Ψ̂∗

(+)a|BΓ[µΓνΓρΓλΓσ]|Ψ̂(+)b > ∆µνρλσ

= i

√
2

15
f

(126)(+)
ab [−

√
2M̂T

a M̂bH + M̂T

a M̂ij
b Hij

−M̂T

aiM̂bjH
ij

(S) + M̂ijT
a M̂bkHk

ij

− 1

12
√

2
ǫijklmM̂ijT

a M̂rs
b Hklm

rs

−
√

3

(
M̂T

a M̂bm +
1

24
ǫijklmM̂ijT

a M̂kl
b

)
Hm] (19)
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where f
(126)(+)
ab = 1

2 (f
(126)
ab + f

(126)
ba ).

5. Quartic Couplings of SO(10)

The technique discussed in Secs.3-4 can be used to compute the quartic

couplings. For illustrative purposes we consider the simplest example with

the superpotenial,

W =
1

2
ΦUM

(1)
UU ′ΦU ′ + f

(1)
ab < Ψ∗

(−)a|B|Ψ(+)b > l
(1)
U ΦU + .. (20)

where the indices U, U ′ run over several Higgs representations of the same

kind. M(1) represents the mass matrices and f (1) are constants. We now

eliminate ΦU using the F-flatness condition: ∂W

∂ΦU
= 0. This leads to7

W(16×16)1(16×16)1 = 2λ
(1)

ab,cd < Ψ̂∗
(−)a|B|Ψ̂(+)b >< Ψ̂∗

(−)c|B|Ψ̂(+)d >

=
1

2
λ

(1)

ab,cd[−N̂T

aijM̂ij
b N̂T

cklM̂kl
d + 4N̂ iT

a M̂biN̂T

cjkM̂jk
d

−4N̂ iT
a M̂biN̂ jT

c M̂dj + 4N̂T

a M̂bN̂T

cijM̂ij
d

−8N̂T

a M̂bN̂ iT
c M̂di − 4N̂T

a M̂bN̂T

c M̂d] (21)

where

λ
(1)

ab,cd = f
(1)
ab f

(1)
cd l

(1)
U

[
M̃(1)

{
M(1)M̃(1) − 1

}]
UU ′

l
(1)
U ′

M̃(.) =

[
M(.) +

(
M(.)

)T
]−1

(22)

Similarly a complete determination of (16 × 16)45(16 × 16)45 and of (16 ×
16)210(16 × 16)210 can be given7.

6. Conclusion

In this paper we have given a brief overview of the SO(2N) (N odd) in-

variant couplings. In Sec.2 we gave a brief summary of some of the salient

features of SO(2N) algebra in terms of oscillator modes. We exhibited

the form of SO(2N) invariant cubic couplings and then specialized these

results to the SO(10) case. In Sec.3 we introduced a basis involving re-

ducible SU(N) tensors in terms of which SO(2N) invariant couplings have

a simple expansion. This result is codified in the so called Basic Theorem

which is stated at the end of Sec.3. In Sec.4 we used the Basic Theorem

to decompose SO(10) invariant cubic couplings in terms of SU(5) × U(1)

invariant forms. An application of the Basic Theorem was given through
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two illustrative examples involving the 16 plet spinor representations and

the tensor representations, 45 and 126. The analysis presented here should

be of interest to model builders using SO(2N) (N odd) type gauge groups.
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